Knowledge-enriched Databases

Advanced Topics in Foundations of Databases, University of Edinburgh, 2019/20

Querying Relational Databases

List the codes of teaching staff

Lecturer id Name
1 Alice
2 Bob
3 Tom
4 Mary

Q(x)

.- TeachingStaff(x,y)

Course | code | organiser
CS100 2
CS200 1
CS300 4

Querying Relational Databases

List the codes of teaching staff

Lecturer id Name
1 Alice
2 Bob
3 Tom
4 Mary

Q(x)

Course | code | organiser
CS100 2
CS200 1
CS300 4

Lecturers are teaching staff

Course organisers are teaching staff

.- TeachingStaff(x,y)

Querying Relational Databases

List the codes of teaching staff

Lecturer id Name Course | code | organiser
1 Alice CS100 2
2 Bob CS200 1
3 Tom CS300 4
4 Mary

Q(x)

VxVy (Lecturer(x,y) — TeachingStaff(x,y))
VxVy (Course(x,y) = 3z TeachingStaff(y,z))

.- TeachingStaff(x,y)

Querying Relational Databases

List the codes of teaching staff

Lecturer id Name Course | code | organiser
1 Alice CS100 2
2 Bob CS200 1
3 Tom CS300 4
4 Mary
@ VxVy (Lecturer(x,y) — TeachingStaff(x,y))
{1, 2,3, 4} VxVy (Course(x,y) — 3z TeachingStaff(y,z))

Q(x) :- TeachingStaff(x,y)

Some Terminology

* QOur basic vocabulary:

— A countable set Const of constants - domain of a database
— A countable set Nulls of marked nulls - globally 3-quantified variables

— A countableset Vars of variables - used in rules and queries
e Atermis aconstant, marked null, or variable
* An atom has the form R(ty,...,,t,) - Risan n-ary relation and t;’s are terms
* Aninstanceis a (possibly infinite) set of atoms with constants and nulls

A databaseis a finite instance with only constants

Syntax of Existential Rules

An existential rule is an expression

VxVy (p(xy) = 3z P(x,z))
—~— —~

body head

 x,yandzare tuples of variables of Vars

* @(x,y) and Y(x,z) are (constant-free) conjunctions of atoms

...also known as tuple-generating dependencies and Datalog+/- rules

Semantics of Existential Rules

An instance) is a model of the rule

o = VxVy(p(x,y) = 3z Y(x,z))

written as J E g, if the following holds:
whenever there exists a homomorphism h such that h(¢@(x,y)) € J,

then there exists g 2 h|, such that g(i(x,z)) € J

N

{t » h(t) | t € x} - therestriction of hto x

Given a set 2 of existential rules, J is a model of Z, writtenas J E 2, if foreachc €2,JE o0

Ontology-Based Query Answering (OBQA)

database
@ knowledge base
\ /\
(D,2)

ont0|ogy/ @

5 \T/

- Q
existential rules conjunctive query

VxVy (@xy) = 3z (x,z)) Q(x) - Ry(V4),ee,Rm(Vin)

Ontology-Based Query Answering (OBQA)

database

knowledge base
N
N

(D,2)

Ont0|ogy/ @
2 \r/

models(D,2) = {J|J2D and JEZ}

Ontology-Based Query Answering (OBQA)

database

knowledge base
N
v
OntOIOgy/ @
2 \T/

Answer(Q,D,2) = N Q(J)
J € models(D,2)

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

2 = {Vx(Person(x) — 3y hasFather(x,y)),
VxVy (hasFather(x,y) — Person(x) A Person(y))}

Qi (x,y) :- hasFather(x,y)
Q,(x) :- hasFather(x,y)
Qs(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Qu(x,w) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

2 = {Vx(Person(x) — 3y hasFather(x,y)),
VxVy (hasFather(x,y) — Person(x) A Person(y))}

Qi(x,y) :- hasFather(x,y)

{(john,bob), (bob,tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

2 = {Vx(Person(x) — 3y hasFather(x,y)),
VxVy (hasFather(x,y) — Person(x) A Person(y))}

Q,(x) :- hasFather(x,y)

{(john), (bob), (tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

2 = {Vx(Person(x) — 3y hasFather(x,y)),
VxVy (hasFather(x,y) — Person(x) A Person(y))}

Qs(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{(john), (bob), (tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

2 = {Vx(Person(x) — 3y hasFather(x,y)),
VxVy (hasFather(x,y) — Person(x) A Person(y))}

Qu(x,w) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{}

Ontology-Based Query Answering (OBQA)

ontology language based on existential rules

/

4
OBQA(L)

Input: a database D, a set of existential rules 2 € L, a CQ Q/k, a tuple of constants t € adom(D)*

Question: t € Answer(Q,D,2)?

BOBQA(L)
Input: a database D, a set of existential rules 2 € L, a Boolean query Q

Question: is Answer(Q,D,2) non-empty?

Theorem: OBQA(L) =, BOBQA(L) for every language L

(=, means logspace-equivalent)

Data Complexity of BOBQA

input D, fixed Zand Q

BOBQA[Z,Q](L)
Input: a database D

Question: is Answer(Q,D,2) non-empty?

Why is OBQA technically challenging?

What is the right tool for tackling this problem?

The Two Dimensions of Infinity

Consider a database D, and a set of existential rules 2

model of (D,)

v

size

(D,Z) admits infinitely many models, of possibly infinite size

The Two Dimensions of Infinity

D = {P(c)} 2 ={Vx (P(x) = 3y (R(x,y) A P(y)))}
model of (D,2) ‘
P(c) P(c) P(c) P(c) P@) |
R(c,c) R(c,L4) R(c,L14) R(c,L4) R(c,L14)
P(L,) P(L,) P(L,) P(L,)
R(L;,1;) R(L1;,15) R(L;,1,) R(L1;,1,)
P(L,) P(L,) P(L,)
R(L,,1,) R(L,,13) R(L,,13)
Size
v P(Ly) P(Ly)
R(Ly,Ly) R(Ly,Lisz)

1,, 1,, 13, ... are marked nulls from Nulls

The Two Dimensions of Infinity

D = {P(c)} 2 ={Vx (P(x) = 3y (R(x,y) A P(y)))}
model of (D,2) ‘
P(c) P(c) P(c) P(c) P@) |
R(c,c) R(c,L,) R(c,L1,) R(c,L,) R(c,L,)
X P(L,) P(L,) P(L,) P(L,)
R(L;,14) R(L1;,L5) R(L1,,1,) R(L1;,L5)
X P(L,) P(L,) P(L,)
R(L1,,L1,) R(L,,13) R(L1,,L13)
e * P(Ly) P(Ly)
R(LyLi) R(LLisa)
Key Idea: Focus on a representative, a %
model that is as general as possible v

Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of (D,2) if the following holds:

1. U isa model of (D,2)
2. for each J € models(D,2), there exists a homomorphism h such that h(U) € J

Query Answering via Universal Models
Theorem: Answer(Q,D,2) is non-empty iff Q(U) is non-empty, where U a universal model of (D,)

(=) Trivial since, for every J € models(D,2), Q(J) is non-empty

Proof:
(<) By exploiting the universality of U
Q by hypothesis
O
hl/’/ h : \\\hn by universality of U
2! So

= VJ € models(D,2), Q(J) is non-empty

VJ € models(D,Z), 3h such that h(g(Q)) € J
= Answer(Q,D,2) is non-empty

The Chase Procedure

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))

chase(D,2) =D U

The Chase Procedure

D

‘ person(john) |
/1

Vx (Persén(x) — Jy (hasParent(x,y) A Person(y)))

L/

chase(D,2) =D U {hasParent(john, L), Person(l,)

The Chase Procedure

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))
N] (]

¢
chase(D,2) = D U {hasParent(john, L), Person(l,),

hasParent(Ll,,1,), Person(l,)

The Chase Procedure

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))
AN \ \

hasParent(L,,L,)\ Person(l,),

hasParent(l,,15), Person(l;)

The Chase Procedure

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))

chase(D,2) = D U {hasParent(john, L), Person(l,),
hasParent(Ll,,1,), Person(l,),

hasParent(l,,13), Person(l;), ...

infinite instance

The Chase Procedure: Formal Definition

e Chasestep - the building block of the chase procedure

* Aruleoc = VxVy(p(x,y) = 3z(x,z)) is applicable to an instance] if:
1. There exists a homomorphism h such that h(@(x,y)) € J

2. Thereisno g2 h, suchthatg(i(x,z)) <)

)= {R(a), P(a,b)})= {R(a), P(bja)}
P o
h={x+a}/ \g={xra,ym b} h={Xl—>a}I,’I
vx (R(x) > 3y P(xy)) vx (R(x) = 3y P(x,y))

X v

The Chase Procedure: Formal Definition

e Chasestep - the building block of the chase procedure

* Aruleoc = VxVy(p(x,y) = 3z(x,z)) is applicable to an instance] if:
1. There exists a homomorphism h such that h(@(x,y)) € J

2. Thereisno g2 h, suchthatg(i(x,z)) <)

* Letl), =J U{g(yp(xz))}, where g 2 h|, and g(z) are “fresh” nulls notin J

* The result of applying o toJ is J,, denoted J[o,h]J, - single chase step

The Chase Procedure: Formal Definition

* Afinite chase of D w.r.t. 2 is a finite sequence

Dloy,hi]J1[0y,hs1,[03,h3])5 -+)4 [on,hn 1),

and chase(D,2) is defined as the instance J,

all applicable rules will eventually be applied

/

* Aninfinitechase of D w.r.t. 2 is a fair finite sequence

Dloy,hi]J1[0,,hs105003,hs])s .. Jalon,halls .

and chase(D,2) is defined as the instanceD U J; U J, U J; U ---UJ U -

/

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D,2) is a universal model of (D,)

the result of the chase after k = 0 applications of the chase step

Proof:

* By construction, chase(D,2) € models(D,2)

* It remains to show that chase(D,2) can be mapped into every other model of (D,2)

* Fix an arbitrary instanceJ € models(D,Z). We need to show that there exists h such that
h(chase(D,2)) € J

* Byinduction on the number of applications of the chase step, we show that for every k > 0,
there exists h,such that h (chase™(D,2)) € J, and h, is compatible with h, ;

* Clearly,hyUh; U ---Uh,U ---is a well-defined homomorphism that maps chase(D,2) toJ

e The claim follows with h=h,Uu h,U ---Uh U ---

Chase: Uniqueness Property

* The result of the chase is not unique - depends on the order of rule application

D = {P(a)} 01 = Vx (P(x) = 3y R(y)) 0, = VX (P(x) = R(x))
Result; = {P(a), R(L), R(a)} o,then o,
Result, = {P(a), R(a)} o, then o,

 But, itisunique up to homomorphic equivalence

e Thus, itis unique for query answering purposes

Query Answering via the Chase

Theorem: Answer(Q,D,2) is non-empty iff Q(U) is non-empty, where U a universal model of (D,)
&
Theorem: chase(D, %) is a universal model of (D,2)

U

Corollary: Answer(Q,D,2) is non-empty iff Q(chase(D,X)) is non-empty

* We can tame the first dimension of infinity by exploiting the chase procedure

* What about the second dimension of infinity? - the chase may be infinite

Can we tame the second dimension of infinity?

Undecidability of OBQA

arbitrary existential rules

/

Theorem: OBQA(JRULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.
Encode the computation of a DTM M with an empty tape using a database D, a set 2 of

existential rules, and a Boolean CQ Q such that Answer(Q,D,2) is non-empty iff M accepts

Gaining Decidability

By restricting the database
* Answer(Q,{Start(c)},Z) is non-empty iff the DTM M accepts
* The problem is undecidable even for singleton databases

e No muchto doin this direction

By restricting the query language
* Answer(Q :- Accept(x),D,Z) is non-empty iff the DTM M accepts

* The problem is undecidable already for atomic queries

e No muchto doin this direction

By restricting the ontology language
* Achieve a good trade-off between expressive power and complexity
* Field of intenseresearch

* Anyideas?

Source of Non-termination

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))

chase(D,2) = D U {hasParent(john, L), Person(l,),
hasParent(L,,L,), Person(l,),

hasParent(L,,15), Person(l;), ...

1. Existential quantification

infinite instance
2. Recursive definitions

Termination of the Chase

* Drop the existential quantification
— We obtain the class of full existential rules

— Very close to Datalog

* Drop the recursive definitions
— We obtain the class of acyclic existential rules

— Also known as non-recursive existential rules

Our Simple Example

D

‘ person(john) |

Vx (Person(x) — 3y (hasParent(x,y) A Person(y)))

chase(D,2) = D U {hasParent(john, L), Person(l,),
hasParent(L,,L,), Person(l,),

hasParent(L,,15), Person(l;), ...

Existential quantification & recursive definitions

are key features for modelling ontologies

Key Question

We need classes of existential rules such that

* Existential quantification and recursive definition coexist

= the chase may be infinite

 BOBQA is decidable, and tractable w.r.t. the data complexity

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

* Alinear existential rule is an existential rule of the form

VxVy (P(x,y) = 3z1(x,z))

/

single atom

e \We denote LINEAR the class of linear existential rules

* But, is this a reasonable ontology language?

30wL2QL

The OWL 2 QL profile is designed so that sound and complete query answering is in LOGSPACE (more precisely, in AC%) with respect to the size of the data (assertions), while providing many
of the main features necessary to express conceptual models such as UML class diagrams and ER diagrams. In particular, this profile contains the intersection of RDFS and OWL 2 DL. It is
designed so that data (assertions) that is stored in a standard relational database system can be queried through an ontology via a simple rewriting mechanism, i.e., by rewriting the query into
an SQL query that is then answered by the RDBMS system, without any changes to the data.

OWL 2 QL is based on the DL-Lite family of description logics [DL-Lite]. Several variants of DL-Lite have been described in the literature, and DL-Liteg provides the logical underpinning for
OWL 2 QL. DL-Liteg does not require the unique name assumption (UNA), since making this assumption would have no impact on the semantic consequences of a DL-Liteg ontology. More
expressive variants of DL-Lite, such as DL-Litep, extend DL-Liteg with functional properties, and these can also be extended with keys; however, for query answering to remain in LOGSPACE,
these extensions require UNA and need to impose certain global restrictions on the interaction between properties used in different types of axiom. Basing OWL 2 QL on DL-Liteg avoids

practical problems involved in the explicit axiomatization of UNA. Other variants of DL-Lite can also be supported on top of OWL 2 QL, but may require additional restrictions on the structure of
ontologies.

3.1 Feature Overview

OWL 2 QL is defined not only in terms of the set of supported constructs, but it also restricts the places in which these constructs are allowed to occur. The allowed usage of constructs in class
expressions is summarized in Table 1.

Table 1. Syntactic Restrictions on Class Expressions in OWL 2 QL

Subclass Expressions Superclass Expressions

a class

intersection (ObjectintersectionOf)

negation (ObjectComplementOf)

existential quantification to a class (ObjectSomeValuesFrom)
existential quantification to a data range (DataSomeValuesFrom)

aclass
existential quantification (ObjectSomeValuesFrom)
where the class is limited to owl:Thing
existential quantification to a data range (DataSomeValuesFrom)

OWL 2 QL supports the following axioms, constrained so as to be compliant with the mentioned restrictions on class expressions:

subclass axioms (SubClassOf)

class expression equivalence (EquivalentClasses)

class expression disjointness (DisjointClasses)

inverse object properties (InverseObjectProperties)

property inclusion (SubObjectPropertyOf not involving property chains and SubDataPropertyOf)
property equivalence (EquivalentObjectProperties and EquivalentDataProperties)

property domain (ObjectPropertyDomain and DataPropertyDomain)

property range (ObjectPropertyRange and DataPropertyRange)

disjoint properties (DisjointObjectProperties and DisjointDataProperties)

https://www.w3.org/TR/owl2-profiles/HOWL_2_QL

Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)} L

{ Vxvy (R(xy) A S(y) = 3z R(z,X))
5 =

vxvy (Rixy) = S(x) =

For LINEAR the chase graph is a forest

Bounded Derivation-Depth Property

D

For LINEAR, k = | Q|- m

with m = |sch(Z)|- (2 - maxarity)maxarity

chase(D,2)

depth k that does not depend on D

7
/
/
“ h
1
1
1
/7
l

chase graph up to depth k

/

Q(chase(D,2)) is non-empty = Q(chaseX(D,2)) is non-empty

The Blocking Algorithm for LINEAR

Theorem: BOBQA[Z,Q](LINEAR) is in PTIME for a fixed set 2, and a Boolean CQ Q

chase(D,2)

! k=1Q| - |sch(Z)| - (2 - maxarity)maarity

The Blocking Algorithm for LINEAR

Theorem: BOBQA[Z,Q](LINEAR) is in PTIME for a fixed set 2, and a Boolean CQ Q

but, we can do better

Theorem: BOBQA[Z,Q](LINEAR) is in LOGSPACE for a fixed set Z, and a Boolean CQ Q

Scalability in OBQA

Exploit standard RDBMSs - efficient technology for answering CQs

database

o

ontology

knowledge base
But in the OBQA setting

we have to query a
knowledge base, not just a

relational database

2

Query Rewriting

compilation

Relational Calculus X

Relational Algebra
SQL query

for every database D, Answer(Q,D,2) is non-empty iff Qs(D) is non-empty

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.
BOBQA(L) is Q-rewritable if, for every Z € L and Boolean CQ Q,
we can construct a query Q; € Qsuch that,

for every database D, Answer(Q,D,2) is non-empty iff Qs;(D) is non-empty

NOTE: The construction of Qs is database-independent

An Example

> = {Vx(P(x) = T(x)), VxVy (R(x,y) = S(x))}

Q - S(X)r U(le)l T(y)

Q; = {Q:-S(x), U(xy), T(y),
C11 - S(X), U(le)l P(Y)/
QZ - R(X,Z), U(Xiy)I T(y)/

Q3 - R(X,Z), U(le)l P(y)}

An Example

> = {VxVy (R(xy) A P(y) = P(x))}

Q :- P(c)

Q; = {Q:-P(c),
Ql .- R(Ciyl)I P(Yl)l
Q, :- R(c,y1), Rly1,y2), Plya),

Q3 - R(Cly1)l R(y11y2)1 R(y21y3)l P(Y3);

* This cannot be written as a finite first-order query

* |t can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not FO-expressible

Query Rewriting for LINEAR

union of conjunctive queries

/

Theorem: LINEAR is UCQ-rewritable

Theorem: BOBQA[Z,Q](LINEAR) is in LOGSPACE for a fixed set 2, and a Boolean CQ Q

...it also tells us that for answering CQs in the presence of LINEAR ontologies,

we can exploit standard database technology

UCQ-Rewritings

* The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

* We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

Normalization Procedure

VxVy (@(x,y) = 3z (P4(x,z) A -+ A P,(x,2)))

VxVy (@(x,y) = 3z Auxiliary(x,z))
VxVz (Auxiliary(x,z) = P,(x,z))

VxVz (Auxiliary(x,z) = P,(x,z))

VxVz (Auxiliary(x,z) = P, (x,z))

NOTE : Linearity is preserved, and we obtain an equivalent ontology w.r.t. query answering

UCQ-Rewritings

* The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

* We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

Rewriting Step

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(u,db,v)

g={x—>v,y—db,z~ u}

!

hasCollaborator(u,db,v)

Thus, we can simulate a chase step by applying a backward resolution step

Q; ={Q :-hasCollaborator(u,db,v),

Q, :- project(v), inArea(v,db)}

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

g={x—>v,y—db,z- c}
(cis a constant)

!

hasCollaborator(c,db,v)

After applying the rewriting step we obtain the following UCQ

Q; ={Q :-hasCollaborator(c,db,v),

Q, :- project(v), inArea(v,db)}

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

Q; ={Q :-hasCollaborator(c,db,v),

Q; :- project(v), inArea(v,db)}

e Consider the database D = {project(a), inArea(a,db)}
e Clearly, Qs(D) is non-empty

* However, Answer(Q,D,2) is empty since there is no way to obtain an atom of the form
hasCollaborator(c,db,) during the chase

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

Q; ={Q :-hasCollaborator(c,db,v),

Q; :- project(v), inArea(v,db)}

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 3-variable

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

g={x—v,y—db,z- v}

y

hasCollaborator(v,db,v)

After applying the rewriting step we obtain the following UCQ

Q; ={Q :-hasCollaborator(v,db,v),

Q, :- project(v), inArea(v,db)}

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

Q; ={Q :-hasCollaborator(v,db,v),

Q; :- project(v), inArea(v,db)}

e Consider the database D = {project(a), inArea(a,db)}
e Clearly, Qs(D) is non-empty

* However, Answer(Q,D,2) is empty since there is no way to obtain an atom of the form
hasCollaborator(t,db,t) during the chase

Unsound Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

Q; ={Q :-hasCollaborator(c,db,v),

Q; :- project(v), inArea(v,db)}

the fact that v in the original query participates in a join is lost after the

application of the rewriting step since v is unified with an 3-variable

Applicability Condition

Consider a Boolean CQ Q, an atom a in Q, and a (normalized) rule o.

We say that o is applicable to a if the following conditions hold:

1. head(o) and a unify via h

2. Forevery variable x in head(o):

1. If h(x) is a constant, then x is a V-variable

2. If h(x) = h(y), where yis a shared variable of a, then x is a V-variable

3. If xisan 3-variable of head(o), and y is a variable in head(o) such that x #y, then h(x) # h(y)

...but, although it is crucial for soundness, may destroy completeness

Incomplete Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x)),

VxVyVz (hasCollaborator(x,y,z) — collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

Q; ={Q :-hasCollaborator(u,v,w), collaborator(u),

Q; :- hasCollaborator(u,v,w), hasCollaborator(u,v,w’)

* Consider the database D = {project(a), inArea(a,db)}
* Clearly, Q over chase(D,X) = D U {hasCollaborator(z,db,a), collaborator(z)}is non-empty

* However, Qs(D) is empty

Incomplete Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x)),

VxVyVz (hasCollaborator(x,y,z) — collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

Q; ={Q :-hasCollaborator(u,v,w), collaborator(u),
Q; :- hasCollaborator(u,v,w), hasCollaborator(u,v,w’)

Q, :- project(u), inArea(u,v)

but, we cannot obtain the last query due to the applicablity condition

Incomplete Rewritings

> = {VxVy (project(x) A inArea(x,y) = 3z hasCollaborator(z,y,x)),

VxVyVz (hasCollaborator(x,y,z) — collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

Q; ={Q :-hasCollaborator(u,v,w), collaborator(u),
Q; :- hasCollaborator(u,v,w), hasCollaborator(u,v,w’)
Q, :- hasCollaborator(u,v,w) - by minimization

Qs :- project(w), inArea(w,v) - by rewriting

Qs(D) is non-empty, where D = {project(a), inArea(a,db)}

UCQ-Rewritings

* The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:
1. Rewriting

2. Minimization

* We are going to see the version of the algorithm that assumes normalized existential

rules, where only one atom appears in the head

The Rewriting Algorithm

Q;:={Q}
repeat
Qaux == Qs
foreach disjunct g of Q_,, do
//Rewriting Step
foreach atom ain g do
foreachrulecinX do
if oisapplicable to a then
Orew := rewrite(g,a,0) //we resolve a using o
if g,.,, does not appear in Q; (modulo variable renaming) then
Q; = Qs U {Gren}
//Minimization Step
foreach pair of atoms a,[3 in g that unify do
Amin := Minimize(q,o,B) //we apply the MGU of a and B on g
if q,,;, does not appear in Qs (modulo variable renaming) then
Q; = Qs U {qmin}
until Q_ = Q5
return Q5

Termination

Theorem: The rewriting algorithm terminates under LINEAR

Proof Idea:

* Keyobservation: the size of each partial rewriting is at most the size of the given CQ Q

* Thus, each partial rewriting can be transformed into an equivalent query that contains
at most (| Q| - maxarity) variables

 The number of queries that can be constructed using a finite number of predicates and
a finite number of variables is finite

* Therefore, only finitely many partial rewritings can be constructed - in general,
exponentially many

Size of the Rewriting

* |deally, we would like to construct UCQ-rewritings of polynomial size

e But, the standard rewritng algorithm produces rewritings of exponential size

e (Can we do better? NO!!!

2 = {Vx(Ri(x) = P (x))} for k €{1,...,n} Q :- Py(x), ..., Pn(x)

, Pn(X)

/ N

P1(X) V Ry(P.(X) V R,(X)

thus, we need to consider 2" disjuncts

Size of the Rewriting

* |deally, we would like to construct UCQ-rewritings of polynomial size
e But, the standard rewritng algorithm produces rewritings of exponential size

e (Can we do better? NO!!!

e Although the standard rewriting algorithm is worst-case optimal, it can be

significantly improved

e Optimization techniques can be applied in order to compute efficiently small

rewritings - field of intense research

Recap

database
knowledge base
N
N
(D,2)
OntOIOgy/ @
)2 \T/
T--Q
existential rules conjunctive query
VxVy (p(xy) = Jz(x,2)) Q(x) :- Ry(V1),-,Rm(Vin)

in general, this is an undecidable problem, but well-behaved ontology languages exists - LINEAR

